Table of Contents
Physics seeks to describe the nature of the physical world. The most fundamental of the natural sciences, it forms an essential part of any serious program of study in any branch of science, and indeed, to an increasing degree in the modern world, it is important in any well-balanced curriculum for the non-scientist as well.
In the undergraduate program the development of fundamental concepts and mathematical formulation proceeds simultaneously in a selected series of courses in physics and mathematics, from the elementary ideas of classical mechanics through modern relativistic, quantum and nuclear theories.
Whether the student wishes to prepare for more advanced study in physics itself; for a career in applied areas such as photonics, materials science, or biomedical engineering; for a career in such fields as astronomy, space research, or oceanography; or simply wishes to be informed in an important area of scientific thought, he/she will be able to make an appropriate choice of courses from the list.
3 | from PHYS 1041, 1051 |
3 | from MATH 1111 |
3 | from PHYS 1551 |
15 | from MATH 1121 or Physics, including 6 from the 3/4000 level, chosen in consultation with the Program Advisor. |
Note: Only one of PHYS 1001, 1021, 1031 and 1401 can be used on the Physics Minor
Note: Students who complete the Minor in Applied Physics may not complete this Minor
3 | from PHYS 1041, 1051 |
6 | from PHYS 1551, 2801 |
3 | from MATH 1111 |
12 | from PHYS 1401, 3321, 3361, 3581, 3701, 3751, COMP 1631, 1731, MATH 1121, including 6 from the 3/4000 level, chosen in consultation with the Program Advisor |
9-12 | from PHYS 1001, 1021, 1031, 3001, 3021 |
3 | from PHYS 1041, 1051 |
9-12 | from BIOL 2811, 3021, CHEM 2111, 2211, 3251, GENS 1401, 3451, PHIL 1651, 2511, PHYS 1551, 3701, 3811, 4311, 4411, 4851, or maximum of 3 credits from BIOL 2701, COMP 1731, GENS 2431, MATH 2311, PHYS 2801 |
Note: Many of these courses have one or more prerequisite courses. Students should plan their sequence of courses in consultation with the Program Advisor. |
Note: At least 6 credits need to be from the 3/4000 level for this Minor.
6 | from PHYS 1051, 1551 |
6 | from CHEM 1001, 1021 |
3 | from BIOL 1001, BIOL 1501, BIOC 1001, GENS 1401, PSYC 1001 or PSYC 1011 |
3 | from COMP 1631, MATH 2221 |
12 | from MATH 1111, 1121, 2111, 2121 |
21 | from PHYS 2251, 2801, 3101, 3451, 3701, 3811, 4411 |
12 | from Physics with at least 9 at the 3/4000 level, chosen in consultation with the Program Advisor |
Note: Students pursuing a Major in Physics may be allowed to substitute PHYS 1041 for PHYS 1051 with permission of the Department
51 | credits as in the first six lines of the Major |
6 | from PHYS 4990 |
6 | from PHYS 3201, 3821 |
3 | from MATH 3141 |
3 | from MATH 2221, 3131, 3161, 3221, 3411 |
3 | from Physics at any level, chosen in consultation with the Program Advisor |
3 | from Physics at the 3/4000 level, chosen in consultation with the Program Advisor |
6 | from Physics at the 4000 level, chosen in consultation with the Program Advisor |
6 | from Physics or Mathematics at the 3000/4000 level, chosen in consultation with the Program Advisor |
Note: Students pursuing Honours in Physics may be allowed to substitute PHYS 1041 for PHYS 1051 with permission of the Department
3 | from BIOL 1001, BIOL 1501, BIOC 1001, GENS 1401, PSYC 1001 or PSYC 1011 |
18 | from MATH 1111, 1121, 2111, 2121, 2211, 2221 |
3 | from COMP 1631 |
6 | from CHEM 1001, 1021 |
12 | from PHYS 1051, 1551, 2251, 2801 |
3 | from MATH/PHYS 3451 |
9 | from MATH 3111, 3211, 3311 |
6 | from MATH 3141, 3161 |
6 | from MATH 3131, 3151, 3221, 3231, 3321, 3411, 3531, 4111, 4121 PHYS 4101, 4201, 4311, 4831, 4851, 4911; only 3 credits may be selected from the listed Physics courses |
18 | from PHYS 3101, 3201, 3701, 3811, 3821, 4411 |
6 | from PHYS 4990 |
Note: Students pursuing Honours in Mathematics and Physics may be allowed to substitute PHYS 1041 for PHYS 1051 with permission of the Department
Note: The listing of a course in the Calendar is not a guarantee that the course is offered every year.
Note: Students must obtain a grade of at least C- in all courses used to fulfill prerequisite requirements. Otherwise, written permission of the appropriate Department Head or Program Co-ordinator must be obtained.
PHYS 1021 (3.00)
Solar System Astronomy
This course introduces observational and solar system astronomy. Topics include observational astronomy, celestial mechanics, solar system patterns, theories of origin, radiometric dating, processes which transform planet surfaces, planetary atmospheres, comets, asteroids, meteoroids, and the search for life beyond Earth. It considers extrasolar planetary systems in the context of theories of solar system formation. [Note 1: In addition to daytime lab periods all students will need to be present at a number of night time observing periods at the university observatory.] (Format: Lecture 3 Hours, Laboratory 1.5 Hours) (Distribution: Natural Science-b/c) (Exclusion: PHYS 1001)
PHYS 1031 (3.00)
Stars, Galaxies and the Universe
This course introduces stellar and galactic astronomy as well as cosmology. Topics include optics and telescopes, atomic structure and spectra, the sun, stellar types and evolution, stellar remnants (black holes, neutron stars, and white dwarfs), quantum and relativistic ideas, galaxies, and dark matter and energy. [Note 1: In addition to daytime lab periods all students will need to be present at a number of night time observing periods at the university observatory.] (Format: Lecture 3 Hours, Laboratory 1.5 Hours) (Distribution: Natural Science-c) (Exclusion: PHYS 1001)
PHYS 1041 (3.00)
Physics for the Life Sciences
This algebra-based course introduces and describes from a Physics perspective the many physical processes involving living organisms. Topics include biomechanics, kinesiology, energy and the body, fluid flow, electrical signaling, electrocardiography and electroencephalography, sound and hearing, light and vision, microscopy, and imaging of brain function. [Note 1: This course is designed for students planning to major in a life science.] (Format: Integrated Lecture/Collaborative Learning/Laboratory 6 Hours) (Distribution: Natural Science a/c) (Exclusion: PHYS 1051; PHYS 3521)
PHYS 1051 (3.00)
General Physics I
This algebra based course introduces modern physics. Topics include kinematics, dynamics, work and energy, momentum in one dimension, fluid mechanics, waves and sound, DC circuit electricity, geometrical and physical optics. [Note 1: Students enrolling in Physics 1051 should normally have completed a university preparatory level course in Mathematics.] (Format: Integrated Lecture/Collaborative Learning/Laboratory, 6 Hours) (Distribution: Natural Science a/c) (Exclusion: PHYS 1041)
PHYS 1401 (3.00)
The Physics of Music and Sound
This course explores various aspects of music production, sound transmission and perception. The topics include simple harmonic motion, waves and sound, standing waves, spectral analysis, human ear and voice, auditorium acoustics, and woodwind, brass, and percussion instruments. It also introduces mathematical analysis. (Format: Integrated Lecture and Laboratory 3 Hours) (Distribution: Natrual Science-c)
PHYS 1551 (3.00)
General Physics II
Prereq: MATH 1111; 3 credits from PHYS 1041, 1051; or permission of the Department
This calculus-based course introduces further issues in classical and modern physics. Topics include time-dependent acceleration, gravitation, rotational motion, angular momentum, simple harmonic motion, electric forces, fields and potentials, magnetism, and electromagnetic induction. The course also introduces special relativity, nuclear reactions, particle physics, and cosmology. (Format: Integrated Lecture and Laboratory, 6 Hours)
PHYS 1991 (3.00)
Special Topic in Physics
This course either focuses on topics not covered by the current course offerings in a department or program or offers the opportunity to pilot a course that is being considered for inclusion in the regular program. [Note 1: Prerequisite set by Department/Program when the topic and level are announced. Note 2: When a Department or Program intends to offer a course under this designation, it must submit course information, normally at least three months in advance, to the Dean. Note 3: Students may register for PHYS 1991 more than once, provided the subject matter differs.] (Format: Variable)
PHYS 2251 (3.00)
Classical Waves
Prereq: PHYS 1551; MATH 1121; or permission of the Department
In this course the study of free, forced and damped harmonic oscillator is followed by a treatment of discrete coupled oscillators in one dimension. This is then generalized to the study of traveling and standing waves in continuous media. Ideas of Fourier components of signals are introduced. A number of examples will be taken from physical optics, and the topics in this course provide the theoretical basis for understanding modern photonic devices. (Format: Lecture 3 Hours, Laboratory 3 Hours)
PHYS 2801 (3.00)
Data Acquisition and Analysis
Prereq: MATH 1111; 3 credits from PHYS 1041, 1051; or permission of Department
This course provides techniques and software tools that assist in the use of computers to enhance work in science. It introduces basic methodology for data manipulation such as error analysis, statistical analysis of data, linear regression, graphing, aspects of simulation, digitization, interfacing and data acquisition. (Format: Lecture 3 Hours, Laboratory 3 Hours)
PHYS 2991 (3.00)
Special Topic in Physics
This course either focuses on topics not covered by the current course offerings in a department or program or offers the opportunity to pilot a course that is being considered for inclusion in the regular program. [Note 1: Prerequisite set by Department/Program when the topic and level are announced. Note 2: When a Department or Program intends to offer a course under this designation, it must submit course information, normally at least three months in advance, to the Dean. Note 3: Students may register for PHYS 2991 more than once, provided the subject matter differs.] (Format: Variable)
PHYS 3001 (3.00)
Astrophysics
Prereq: PHYS 1551; PHYS 1031; or permission of the Department
This course examines issues in stellar, galactic and extra-galactic astrophysics. Topics covered include celestial co-ordinate systems, astronomical luminosity relationships, astrophysical instrumentation, stellar spectra, Hertzsprung-Russell diagrams, stellar evolution, protostars, stellar deaths (white dwarfs, neutron stars, stellar black holes), energy processes and transport in stars, stability and variable stars, the structure of our galaxy, galaxy types and evolution, and energetic sources such as quasi-stellar objects. [Note 1: In addition to daytime lab periods all students will need to be present at a number of night time observing periods at the university observatory.] (Format: Lecture 3 Hours, Laboratory 3 Hours)
PHYS 3021 (3.00)
Life in the Universe
Prereq: Second-year standing; PHYS 1021; or permission of the Department
This course will examine issues concerning the origin, evolution and survival of life in the universe from an astrophysical perspective. Topics covered include cosmology and the origin and evolution of the universe, solar system origin, detection of extrasolar planets, what is life and what conditions are necessary to sustain it, searches for life in the solar system, habitable zones, complex organics in extraterrestrial materials, delivery of organics to the primordial and current Earth and other planets, astrophysical threats to life on Earth, life in space, and searches for extraterrestrial intelligence. (Format: Lecture 3 Hours, Laboratory 3 Hours)
PHYS 3101 (3.00)
Electricity and Magnetism
Prereq: PHYS 1551; MATH/PHYS 3451; MATH 2111; MATH 2121; or permission of the Department
This course will cover vector analysis, differential and integral calculus as well as solutions of the Poisson and Laplace equations for different electrostatic problems. Certain special techniques such as method of images, separation of variables and multipole expansion are then introduced. Magnetostatics and electric and magnetic fields in matter are also examined leading to the conclusion of this course where Maxwell equations are integrated and applied. (Format: Lecture 3 Hours, Laboratory/Problem Solving 3 Hours)
PHYS 3201 (3.00)
Statistical Mechanics
Prereq: PHYS 2251; MATH 2111; or permission of the Department
This course examines in detail the Maxwell- Boltzmann Bose-Einstein and Fermi-Dirac distributions and the conditions and physical systems under which they apply. (Format: Lecture 3 Hours)
PHYS 3231 (3.00)
Advanced Physical Chemistry
Prereq: CHEM 2211; or 6 credits from PHYS 3701, 3821; or permission of the Department
This course examines physical and chemical applications of kinetics, including those related to reaction mechanisms and dynamics. Specific topics include: experimental methods in kinetics; introduction to quantum mechanics needed to understand chemical kinetics; the potential energy surface (PES) for a chemical reaction and the effects of different features of the PES on the rate of chemical reactions; the effects of zero point energy and quantum tunneling on reaction rates. [Note 1: This course is cross-listed with CHEM 3231 and may therefore count as 3 credits in either discipline.] (Format: Lecture 3 Hours, Laboratory 3 Hours) (Exclusion: CHEM 3221; any version of CHEM 3231 previously offered with a different title)
PHYS 3321 (3.00)
Analog Electronics and Signal Processing
Prereq: PHYS 1551; PHYS 2801; or permission of the Department
This is a course in analog electronics and in analog signal processing, and would be valuable both for those planning to go on in technical careers and for scientists who wish to develop tools for the collection and analysis of data. Topics include impedance matching considerations, semiconductor physics, pn junction diodes, AC circuit analysis, passive filter designs, DC power supply construction including regulation, junction and field effect transistors and transistor amplifier circuits, operational amplifiers, active filter designs, signal conditioning circuits such as Schmitt trigger, modulation and demodulation, noise (sources, frequency characteristics, and control measures), integrating sensors and electronics, practical issues in electronics, and an introduction to the photonic transition. (Format: Lecture 3 Hours, Laboratory 3 Hours)
PHYS 3361 (3.00)
Digital Signal Processing and Electronics
Prereq: COMP 1631; PHYS 1551; or permission of the Department
This course introduces students to both digital electronic circuits and digital signal processing, and would be valuable both for those planning to go on in technical careers in computer science or in physics, and for scientists who wish to develop tools for the collection and analysis of data. Topics to be covered include digital logic gates, Boolean algebra, counting circuits, digital signal conditioning, sampling considerations such as the Nyquist criterion, analog to digital and digital to analog conversion, Fourier Transform theory and application as FFT, correlation and convolution, digital filtering using finite impulse response and infinite impulse response circuits including the ztransform and filter design, and digital image processing including two dimensional FFT techniques, microprocessors, microcontrollers and digital signal processing integrated circuits. [Note 1: This course is cross-listed with COMP 3361 and may therefore count as three credits in either discipline.] (Format: Lecture 3 Hours, Laboratory 3 Hours)
PHYS 3451 (3.00)
Methods of Mathematical Physics
Prereq: MATH 2111; 3 credits from MATH 2121, PHYS 2251; or permission of the Department
This course provides students with a selection of mathematical skills needed in more advanced physics courses. It introduces frequently utilized mathematical methods in theoretical physics in close connection with physics applications. Topics include vector and tensor analysis, use of special functions, operators and eigenvalue problems. Fourier analysis, and complex variable techniques. [Note 1: This course is cross-listed with MATH 3451 and may therefore count as three credits in either discipline.] (Format: Lecture 3 Hours, Laboratory 3 Hours)
PHYS 3581 (3.00)
Medical Physics
Prereq: PHYS 1551; or permission of the Department
This course considers fundamental concepts of ionizing radiation, diagnostic applications of medical physics, and therapeutic applications of medical physics. Diagnostic topics include x-rays, computed tomography, magnetic resonance imaging, positron emission tomography, and nuclear medicine. Therapeutic topics include radiation generators, absorbed dose calculations, dose measurement, and brachytherapy. [Note 1: This course is intended both for physics students who are considering a career in medical physics or in the field of medicine, and for students in other programs with similar interests.] (Format: Integrated Lecture and Laboratory 3 Hours)
PHYS 3701 (3.00)
Thermodynamics
Prereq: PHYS 2801; MATH 2111; or permission of the Department
The objective of the course is to develop a clear and broad understanding of the First and Second Law of Thermodynamics, with application to a wide range of problems. Topics include: the general energy equation, First Law, Second Law, entropy, limiting-cycle efficiencies, irreversibility and availability, steam power plant, refrigeration and gas engine applications. (Format: Lecture 3 Hours, Laboratory 3 Hours)
PHYS 3751 (3.00)
Energy Production and The Environment
Prereq: PHYS 1551; CHEM 1021; or permission of the Department
This course examines different aspects of energy harvesting, storage, and transmission with particular emphasis on the environmental impacts, sustainability, and development of renewable energy resources. It also introduces modern technologies based on the development of novel materials. Specific technologies and topics may include: wind power, photovoltaic generation, solar energy, nuclear fission, and fusion, hydroelectric, combustion based fuel generation, tidal energy and fuel cells. [Note 1: This course is cross-listed with CHEM 3751 and may therefore count as 3 credits in either discipline.] (Format: Lecture 3 Hours, Laboratory 3 Hours) (Exclusion: Any version of PHYS 3751 previously offered with a different title)
PHYS 3811 (3.00)
Modern Physics
Prereq: PHYS 2251; or permission of the Department
This course considers the two major revolutionary ideas of modern physics, quantum mechanics and special relativity. It considers Lorentz transformations, length contraction and time dilation, relativistic mass and momentum, including the fourvector relativistic notation. It also examines evidence for quantization along with early models for atoms and discusses De Broglie's hypothesis for the matter wave. Other topics include the Schrodinger equation and its solutions for some usual systems. The course ends with a look at the three dimensional systems and a discussion of angular momentum in quantum mechanics. (Format: Lecture 3 Hours, Laboratory 3 Hours) (Exclusion: Any version of PHYS 3811 previously offered with a different title)
PHYS 3821 (3.00)
Quantum Mechanics
Prereq: PHYS 3811; MATH/PHYS 3451; or permission of the Department
This course is an introduction to formal quantum mechanics: the matrix formulation, harmonic oscillator, perturbation theory, two-state systems, multiparticle systems, and an introduction to the general theory of angular momentum. (Format: Lecture 3 Hours) (Exclusion: Any version of PHYS 3821 previously offered with a different title)
PHYS 3991 (3.00)
Special Topic in Physics
This course either focuses on topics not covered by the current course offerings in a department or program or offers the opportunity to pilot a course that is being considered for inclusion in the regular program. [Note 1: Prerequisite set by Department/Program when the topic and level are announced. Note 2: When a Department or Program intends to offer a course under this designation, it must submit course information, normally at least three months in advance, to the Dean. Note 3: Students may register for PHYS 3991 more than once, provided the subject matter differs.] (Format: Variable)
PHYS 4101 (3.00)
Electromagnetic Theory
Prereq: PHYS 3101; 3 credits from PHYS 2251, MATH 2121; or permission of the Department
An advanced treatment of static and time-dependent electric and magnetic fields in materials. Particular attention will be given to wave solutions of Maxwell's equations for spatial dependent media such as wave guides. (Format: Lecture 3 Hours)
PHYS 4201 (3.00)
Solid State Physics
Prereq: PHYS 2251; or permission of the Department
This course studies the various quantized models used to describe the thermal, electrical, optical and electromagnetic properties of solids. It also analyses conductors, semi-conductors and insulators. (Format: Lecture 3 Hours, Laboratory 3 Hours)
PHYS 4311 (3.00)
Modern Optics
Prereq: PHYS 2251; PHYS 2801; PHYS 3101; or permission of the Department
This course provides an advanced treatment of a number of topics in modern optics with particular emphasis on topics of industrial and research importance. A brief treatment of geometric optics will concentrate on the design of optical systems. Topics in physical optics may include dispersion in materials, production and properties of polarized light, interference, diffraction in the Fresnel and Fraunhofer limits, Fourier optics, holography and an introduction to quantum optics. Applications of this theoretical background will be made in such areas as fibre-optic transmission, photonic devices, thin film coatings, and electrochromic devices. There will also be some considerations of electro-optical devices such as lasers, charge coupled device detectors, image intensifiers and photodiodes. (Format: Lecture 3 Hours, Laboratory 3 Hours) (Exclusion: PHYS 4401)
PHYS 4411 (3.00)
Classical Mechanics and Relativity
Prereq: PHYS 3811; MATH/PHYS 3451; or permission of the Department
This course covers three-dimensional dynamics of both particles and rigid bodies using various coordinate systems. The course focuses on an introduction to Lagrangian and Hamiltonian formalisms, followed by application of these approaches to problems in constrained motion. Other topics covered include motion in resistive fluids, planetary orbits, motion in accelerated reference frames and the inertia tensor. The latter part of the course provides an introduction to general relativity including spacetime invariants, metric and metric tensor, the field equations and tests of general relativity. (Format: Integrated Lecture/Laboratory, 6 Hours) (Exclusion: Any version of PHYS 4411 previously offered with a different title)
PHYS 4831 (3.00)
Advanced Quantum Mechanics
Prereq: CHEM 3231; or 6 credits from PHYS 3821, MATH 2221; or permission of the Department
This course extends the study of principles of quantum mechanics, comparing properties of continuous and discrete representations. It also develops time-independent perturbation theory for first order, second order, and degenerate cases and treats small perturbations through direct diagonalization of large matrices. This course examines variational principle, central force problems, elements of scattering theory, and the addition of quantized angular momenta. The course concludes with applications of quantum mechanics in molecules, aspects of relativistic quantum mechanics, time dependence in quantum and quantum statistics. [Note 1: This course is cross-listed with CHEM 4831 and may therefore count as 3 credits in either discipline.] (Format: Lecture 3 Hours) (Exclusion: Any version of PHYS 4831 previously offered with a different title)
PHYS 4851 (3.00)
Nuclei and Fundamental Particles
Prereq: PHYS 3821; or permission of the Department
This is an introductory course in nuclear theory and particle physics and discusses nuclear energy levels and spectra, scattering experiments, symmetry and conservation principles, quantum electrodynamics, and the weak and strong interactions. (Format: Lecture 3 Hours)
PHYS 4911 (3.00)
Current Topics in Physics
Prereq: PHYS 3811; or permission of the Department
This course will introduce students to current topics and trends in physics which are not represented in other courses in the curriculum. This will be a seminar format course with sessions led by students, faculty and guest speakers. A key part of the course will be development of skills for identification and critical evaluation of primary literature in physics. (Format: Seminar)
PHYS 4950 (6.00)
Independent Study in Physics
This course permits senior students, under the direction of faculty members, to pursue their interest in areas not covered, or not covered in depth, by other courses through a program of independent study. [Note 1: Permission of the Department/Program Advisor. Students must obtain consent of an instructor who is willing to be a supervisor and must register for the course prior to the last day for change of registration in the term during which the course is being taken. Note 2: A program on Independent Study cannot duplicate subject matter covered through regular course offerings. Note 3: Students may register for PHYS 4950/51 more than once, provided the subject matter differs.] (Format: Independent Study)
PHYS 4951 (3.00)
Independent Study in Physics
This course permits senior students, under the direction of faculty members, to pursue their interest in areas not covered, or not covered in depth, by other courses through a program of independent study. [Note 1: Permission of the Department/Program Advisor. Students must obtain consent of an instructor who is willing to be a supervisor and must register for the course prior to the last day for change of registration in the term during which the course is being taken. Note 2: A program on Independent Study cannot duplicate subject matter covered through regular course offerings. Note 3: Students may register for PHYS 4950/51 more than once, provided the subject matter differs.] (Format: Independent Study)
PHYS 4990 (6.00)
Honours Thesis
Normally, a student electing this course is expected to accomplish work equivalent to any fourth year course. Students are encouraged, but not required, to work on the project in the Department during the summer immediately preceding the senior year. The topic often involves experimental work, but must have a theoretical component. (Format: Independent Study/Thesis)
PHYS 4991 (3.00)
Special Topic in Physics
This course either focuses on topics not covered by the current course offerings in a department or program or offers the opportunity to pilot a course that is being considered for inclusion in the regular program. [Note 1: Prerequisite set by Department/Program when the topic and level are announced. Note 2: When a Department or Program intends to offer a course under this designation, it must submit course information, normally at least three months in advance, to the Dean. Note 3: Students may register for PHYS 4991 more than once, provided the subject matter differs.] (Format: Variable)